JT-6220 塑料壳发卡器

满足【800/900MHz 频段射频识别(RFID)技术应用规定(试行)】和美国 FCC 相关规定;内置天线,结构紧凑;体积小、重量轻、方便放置于桌面;读写数据稳定可靠;全面支持符合 ISO-18000-6C (EPC G2)协议;

产品特点:

■具有多协议兼容、体积小、读写速率快,可广泛地应用于各种 RFID 系统中;

■提供 RS232 通讯接口

■提供自动写卡、读卡 DEMO 软件,方便客户写卡;

物理环境指标:

■电 源: 110[~]240V/50[~]60Hz

- ■适 配 器: 7.5-12V/3A
- ■输出功率: 20[~]30dBm±1dBm
- ■数据接口: RS232
- ■天线增益: 5dBi
- ■工作温度: -20℃~75℃
- ■存储温度: -40℃~85℃
- ■工作湿度: 5%~95%无冷凝
- ■尺 寸: 160*110*40mm
- ■重 量:约300g
- ■外壳材料: ABS

主要性能指标:

■通讯协议: EPC Global Class1 Gen2/ISO 18000-6C
■频率特征: 国标: 920.625MHz[~]924.375MHz, 信道间隔 250kHz 美标: 902.75MHz[~]927.25MHz, 信道间隔 500kHz
■频率模式: 定频/跳频
■读取距离: 读取 JT-301(远距离白卡)距离: 约 40cm;
■写卡距离: 写入 JT-301(远距离白卡)距离: 约 10[~]20cm;

标签信息如下: JT-301 远距离白卡 产品型号: JT-301 料: PVC 或 PET 材 寸:(长) 85.5×(宽) 54×(厚) 1.0±0.2MM 尺 芯 片: Alien/higgs3 支持协议: ISO 18000-6C、EPC Class1 Gen2 存储容量: 64 Byte 载波频率: 860~960MHz 工作模式:无源 其 他:表面可彩印

尺寸图:

JT-6220 尺寸图

读写卡操作说明:

在连接 DEMO 前,我们需要确认一下几点:

- 1、确定设备与 PC 机已通过正常的通讯接口连接好(本设备为 RS232 通讯),电源 适配器已连接好,并正常供电。
- 2、卡片正确放置在设备的读取区域上,如下图所示:

方式1

方式2

- **方式 1:** 用手指拿住卡片的边缘,正对着设备的黑条的上方,若为写卡:则距离 10cm 以内;若为读卡:则距离 80cm 以内。
- 方式2:卡片横放在黑条的上方。

错误的放置方式如下:

错误1

错误3

错误1:手全捂住卡片,影响读卡和写卡的效果 错误2:卡片与读写器之间间隔了手,影响读卡和写卡的效果 错误3:卡片没有正放在设备的上方,影响读卡和写卡的效

确定好以上几点都已经操作好后,打开 DEMO:

: disDemoV1.14.exe , 界面如下图

所示:

操作	标签操作	设置通信参数	参数设置	其他参	数					
28.2	□ +#-+				标签数:0	读写次数:	0			
)囲1	机煤式		编号		数据	2	欠数	天线	设备	
	●串口	◎ 网络								
đ	40号 🗌	•								
F	特率 [gen	Ohne -								
		oops +								
ť	· 습号 0	•								
	连接	断开								
- 11	と植式									
-	F 176,544									
	• 单卡	识别								
	◎ 连续	读卡	() 数	据升序	◎ 数据降序			Ē	动保存>	的文件

	通讯模式			
	◎ 串口	◎ 网络		
	串口号 com com 波特率 face			
		• · · · · · · · · · · · · · · · · · · ·		
在通讯模式中点击选		并在下拉选框	内,选择对应的]串口后,确定
所连接读与畚的【波	、符率】及【设备亏】,	一般默认:【波特举	】 万: 9600, 【1	反备亏】万:0,
然后点击【连接】:	<u>连接</u> 连接成功后,	软件界面的左下方,	会对应出现读一	卡器的版本号。
读卡器版本号:6.99	读卡	开始	停止	清空
连接成功后的界面如	下:			
A VC_Demo_V1.14				
基本操作标签操作设置通信参数	参数设置其他参数	and the second second		
通讯模式	标签数:0	读写次数:0	18	
◎ 串口 ● 网络	5冊写 剑娟	八刻 大线 反軍		
串口号 COM4 👻				
波特率 9600bps 👻				
设备号 0 🔻				
[连接] [断开				
工作模式				
◎ 单卡识别				
◎ 连续读卡	◎ 数据升序 ◎ 数据降序	🔲 自动保存为文件		
读卡器版本号:6.99	读卡 开始	停止 清空		

下面具体说明 DEMO 中的写卡操作,分别用【快写模式】和【读写指定区域】可 实现写卡

快写模式为:【标签操作】区的上部分,如下图所示:

4-揉1F	林金操作 设直通信参数	参数设置 其他参数		
	快写模式			
	数据(有效字符0-9和A-	₮, 位數为4、8、12、16、	20、24位(可以用空格分隔)	快写
	I		□自动增1	清空
	读写指定区域			
		TT 46 Held		法和
		开始现址 👻		~~~
	★13 ◆ 数据(有效字符0-9和A-1	开始地址 ▼ 7.长度为4、8、12、16等4	Ng → 的倍数位,可以用空格分隔)	国家
	数据(有效字符0-9和A-1	井和屯亚 ▼	的倍数位,可以用空格分隔)	写入
	★据(有效字符0-9和A-1) 高级操作	开始地址	N.程▼ 的信數位,可以用空格分隔)	<u> 写入</u> 清空
	▲34 (有效字符0-340A-1 款据(有效字符0-340A-1 高級操作 访问密码	++加电虹 ▼ ₹,长度为4、8、12、16等4 操作区域	N2 ▼ 的信數位,可以用空格分隔)	写入 清空 谈卡
	★3 ★3 ★3 ★3 ★3 ★3 ★3 ★3 ★3 ★3 ★3 ★3 ★3 ★	→ #378.211	N₂ ▼ 的倍數位,可以用空格分隔)	<u> 写入</u> 写入 清空 説表 解決

【快写】: 可对标签的 EPC 区进行快速改写,将需要写入的数据填入方框内(数据必须是 16 进制数,且位数为 4、8、12、16、20、24 位),数据填写完后,将标签放置在读写器正上方

的合适区域,然后点击【快写】 快写,若写入成功,界面的左下方会显示:写入成

功 **写入成功** , 若写入失败, 界面的左下方会显示: 写入失败 **写入失败** , 此时可做以下调整

及检测:

- A、标签放置的位置或高度进行适当的调整;
- B、标签或读写器是否被加密;
- C、检查读写器与电脑连接数据没有问题;

当写入的数据为有顺序的递增加 1, 且为 16 进制数, 可在点击【快写】键之前, 勾选 **2**自动增1, 当快写成功后, 方框内的数据会自动加 1

读写指定区域为:【标签操作】区的中部分,如下图所示:

本操作	标签操作 设置通信参数 参数设置 其他参	数	
	快写模式		
	数据(有效字符0-9和A-F, 位数为4、8、12	2、16、20、24位(可以用空格分隔)	快写
	[□ 自动增1	清空
1	读写指定区域		
	区域 → 开始地址	▼ 长度 ▼ [读取
	数据(有效字符O-9和A-F,长度为4、8、12、	16等4的倍数位,可以用空格分隔)	写入
			清空
	高级操作		
	访问密码 操作	区域 🕢 🗸	锁卡
	销毁密码	消毁标签	解锁

标签读写主要是对标签各个区域内的数据进行读取或写入(其中 TID 区只能读取,不能写入)。

【Reserve(保留区)】: 地址: 0-3; 地址: 0-1存储 32bit 杀死密码(kill),默认为: 00 00 00 00; 2-3存储 32bit 访问密码(Access),默认为:00 00 00 00。

> 当本区域没有被访问加密或者杀死加密的时候,区域内的数据可以进行随意 改写。

- 【EPC(EPC 区)】: 地址: 2-7;存储 96bit ID 号,也就是平常我们设备默认读取出来的数据所存储的区域。当本区域没有被访问加密或者杀死加密的时候,区域内的数据可以进行随意改写。
- 【TID(TID 区)】: 地址: 0-5; 存储 96bit 全球唯一且不可改写的 ID 号。
- 【User(用户区)】: 地址: 0-31;存储 512bit 的数据。默认每个地址都为: 00 00,当本区域没有 被访问加密或者杀死加密的时候,区域内的数据可以进行随意改写。

以上各区域说明,均以 Alien H3 这款比较常用的标签芯片作为范例。不同的芯片,对应的区 域数据和实际作用可能会有所不同,具体得联系业务员或售后技术进行查看核实。 举例说明标签读写的操作步骤:

1、 将标签放置在连接好设备的天线正上方,大概: 3-5cm 处。(保证天线周围没有其他标签)

2、在【区域】中选取所要进行读取或写入的区域(以 EPC 区为例)

区19g	
数据 (
	用户区点击 EPC,点击后,确认:区域 IPC区 -
	开始地址 📃 🗸
	长度为4、{3
	4 5
在开始	<u>6</u> 抽扯选择今话的起始抽出了了
11.71 80	
	3
1.14	
任长度 初设为	上选择需要读取或与人的数据长度 【****】 【******】 【******】 【******】 【******】 【******】 【******】
即现在	, 0, 是对 EPC 区起始位置为: 2,长度为:6 的数据进行读取或写入。若只是进行读
则只需	按【读取】 读取, 当读取成功后, 数据显示栏会出现对应的数据,
则只需 数据(诸	按【读取】 读取 ; 当读取成功后,数据显示栏会出现对应的数据, 政字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔)
则只需 数据(译 E2 00	按【读取】 读取 ; 当读取成功后,数据显示栏会出现对应的数据, 效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08
则只需 数据(存 E2 00	按【读取】 读取 ; 当读取成功后,数据显示栏会出现对应的数据, 效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08
则只需 数据(译 E2 00 并在软	按【读取】 读取 ; 当读取成功后,数据显示栏会出现对应的数据, 效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示:
则只需 数据 (략 E2 00 并在软 ♣ VC_D	按【读取】 读取 ; 当读取成功后,数据显示栏会出现对应的数据, 效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示: emo_V1.14
则只需 数据 (략 E2 00 并在软 ♣ VC_D	按【读取】 [读取]; 当读取成功后,数据显示栏会出现对应的数据, (效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示: emo_V1.14
则只需 数据 (f E2 00 并在软 杀 VC_D	按【读取】 读取 ; 当读取成功后,数据显示栏会出现对应的数据, 数字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示: emo_V1.14
则只需 對据 (략 E2 00 并在软 ♣ VC_D	按【读取】 读取 ; 当读取成功后,数据显示栏会出现对应的数据, 致字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示: emo_V1.14 F 标签操作 设置通信参数 参数设置 其他参数 供写模式 数据(有效字符0-9和A-F,位数为4、8、12、16、20、24位 可以用空格分隔) 使写
则只需 對据(译 E2 00 并在软 ≹ VC_D	按【读取】 读取 : 当读取成功后,数据显示栏会出现对应的数据, 数字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示: emo_V1.14 正 标签操作 设置通信参数 参数设置 其他参数 使写模式 数据 (有效字符0-9和A-F, 位数为4、8、12、18、20、24位 (可以用空格分隔) 使写 ② 自动增1 清空
则只需 E2 00 并在软 VC_D	按【读取】 读取 ; 当读取成功后,数据显示栏会出现对应的数据, 数字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示: emo_V1.14 体容操作 设置通信参数 参数设置 其他参数 使写模式 数据 馆效字符0-9和A-F,位数为4、8、12、16、20、24位 何以用空格分隔) 使写 词 自动增1 清空 读写指定区域
则只需 数据 (⊄ E2 00 并在软 ♣ VC_D	按【读取】 读取 : 当读取成功后,数据显示栏会出现对应的数据, a效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示: emo_V1.14 F 标签操作 设置通信参数 参数设置 其他参数 供写模式 数据 (有效字符0-9和A-F,位数为4、8、12、16、20、24位 (可以用空格分隔)
则只需 数据 (译 E2 00 并在软 ∛ VC_D	按【读取】 读取 ; 当读取成功后,数据显示栏会出现对应的数据, 致学符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示: emo_V1.14 下發操作 设置通信参数 参数设置 其他参数 快写模式 数据(有效字符0-8和A-F,位数为4、8、12、16、20、24位(可以用空格分隔) 快写 《自动增1 清空 读写描定区域 区域 即区 , 开始地址 2 , 长度 6 , 读取 数据(有效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 写入
则只需 E2 00 并在软 VC_D	按【读取】 读取 ; 当读取成功后,数据显示栏会出现对应的数据, a效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示: emo_V114 F 标签操作 设置通信参数 参数设置 其他参数 收写模式 数据(病效字符0-9和A-F,位数为4、8、12、16、20、24位(可以用空格分隔) 快写 可自动增1 清空 读写描定区域 区域 mcC 平 开始地址 2 长度 6 读取 读取 数据(病效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 写入 12 00 40 00 79 19 00 98 27 80 00 08
则只需 整 2 00 并在软 ♣ VC_D	按【读取】 [读取]: 当读取成功后,数据显示栏会出现对应的数据, a效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示: 读取成功。如下图所示: emo_V1.14 F 标签操作 设置通信参数 参数设置 其他参数 使写模式 数据(有效字符0-9和A-F,位数为4、8、12、16、20、24位(可以用空格分隔) 使写 了自动增1 清空 读写指定区域 区域 配区 开始地址 2 、 长度 6 、 读取 数据(有效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 写入 E 2 00 40 00 79 19 00 98 27 80 00 08 正在 考虑
则只需 整 2 00 并在软 ▲ VC_D	按【读取】 读取 : 当读取成功后,数据显示栏会出现对应的数据, a效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示: emo_V1.14 F 标签操作 设置通信参数 参数设置 其他参数 供写模式 数据(病效字符0-9和A-F,位数为4、8、12、16、20、24位(可以用空格分隔) 快写 读写指定区域 区域 配区 , 开始地址 2 , 长度 6 , 读取 数据(病效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 写入 E 200 40 00 79 19 00 98 27 80 00 08 高級操作
则只需 E2 00 并在软 VC_D <u>基本操</u>	按【读取】 读取 : 当读取成功后,数据显示栏会出现对应的数据, 和效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 40 00 79 19 00 98 27 80 00 08 件左下方显示:读取成功。如下图所示: emo_V1.14 F 布签操作 设置通信参数 参数设置 其他参数 收写模式 数据 (有效字符0-9和A-F,位数为4、8、12、16、20、24位 (可以用空格分隔) 使写 读写指定区域 区域 配区 开始地址 2 长度 6 读取 读取 数据(有效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) 写入 至 00 40 00 79 19 00 98 27 80 00 08 高空 高級操作 访问密码 操作区域 《 新达
则只需 E2 00 并在软 ♣ VC_D	按【读取】

相反,若读取失败,则数据栏没有任何数据显示,软件左下方显示:读取失败。读取失败. 此时,应该再次检查标签的好坏、放置和设备、天线、数据线的连接是否完好。如果还是未 能解决可及时联系对应的业务员或售后技术。 若需要对 EPC 区起始位置为: 2,长度为: 6 的数据,进行写入的时候。需要在数据栏里填入 与长度设置一样长的数据。

数据(有效字符0-9和A-F,长度为4、8、12、16等4的倍数位,可以用空格分隔) E2 00 11 22 22 33 44 55 66 77 88 99

当写入成功后,软件左下方显示:写入成功。如下图所示:

中写描式	n an			
が用(右効空符0-9和4-1	▼	4位(可以用空格分隔)	快写	
	., 1282/5.1011211012012	☑ (月2011年11月7147)	清空	
读写指定区域				
⊠域 EPC⊠ ▼	开始地址 2 🔻	长度 💪 🔻	读取	
数据(有效字符0-9和A-F	7,长度为4、8、12、16等4的倍数	位,可以用空格分隔)	写入	
E2 00 11 22 22 33 44	55 66 11 88 99		清空	
高级操作				
访问密码	操作区域	•	锁卡	
	销毁	标签	解锁初始化标签	
销毁密码				

为确保已经成功写入所需数据,此时可以点击【清空】 清空,再点击【读取】 读取,

读取成功后,再核实数据栏显示的数据是否就是需要写入的数据。核实无误后,则证明写入 成功。

相反,若写入失败,软件左下方显示:写入失败。写入失败.

注: 当对应需要操作的区域被访问加密了以后,在进行写入时,需要输入访问密码才能进行 写入; 当对应需要操作的区域被杀死加密了以后,就不能进行写入。

更详细的软件操作说明可查询《分立元器件读写器软件操作说明书》